Exercices à imprimer avec la correction sur le raisonnement par récurrence – Terminale S – Tle Exercice 01 : Démonstration par récurrence Soit f la fonction définie sur R par et la suite définie par et pour tout entier naturel n, Démontrer que la fonction f est croissante sur R. Démontrer par récurrence que la suite est décroissante. En déduire que pour tout entier naturel n, Exercice 02 : Principe de récurrence Soit v la suite définie, pour tout entier…
Raisonnement par récurrence – Terminale – Exercices corrigés – PDF à imprimer
Raisonnement par récurrence – Terminale – Cours – PDF à imprimer
Cours de Terminale S sur le raisonnement par récurrence – Tle Modes de génération d’une suite numérique Par une formule explicite La suite u est définie de manière explicite lorsque chaque terme s’exprime directement en fonction de n. Exemple : Pour tout n ≥ 0, les suites u et v sont définies par les formules explicites suivantes : Ces formules permettent de calculer directement un terme de rang quelconque. Par exemple, pour les deux suites, le terme de rang 4…