Reconnaître un carré – 4ème – Cours sur les parallélogrammes particuliers – PDF à imprimer

Cours sur “Reconnaître un carré” pour la 4ème

Notions sur “Les parallélogrammes particuliers”

Propriété 1 :
Si un parallélogramme a un angle droit et deux côtés consécutifs de la même longueur, alors c’est un carré.
Exemple 1 :
Données : ABCD est un parallélogramme et (AB) est perpendiculaire à (AD)
On sait de plus que AB = AD

Conclusion : ABCD est un carré

Exercice :
Le quadrilatère MNOP est un parallélogramme.
Ses côtés [MN] et [MP] ont la même longueur.
L’angle (MNP) ̂ est égal à 90°.
Quelle est la nature du quadrilatère MNOP ?
Le quadrilatère MNOP est un parallélogramme qui a un angle droit et deux côtés consécutifs égaux. MNOP est donc un carré.

Propriété 2 :
Si un parallélogramme a ses diagonales perpendiculaires et de la même longueur, alors c’est un carré.
Exemple 2 :
Données : ABCD est un parallélogramme tel que AC=BD et (AC)⊥(BD)

Conclusion : ABCD est un carré

Exercice :
Le quadrilatère IJKL est un parallélogramme de centre F.
On a IK=JL et (KFJ ) ̂= 90°
Quelle est la nature du quadrilatère IJKL ?
Le quadrilatère IJKL est un parallélogramme tel que IK=JL et (KFJ ) ̂= 90°
Le quadrilatère IJKL est donc un parallélogramme qui a ses diagonales perpendiculaires et de même longueur.
C’est donc un carré.

 



Cours 4ème – Reconnaître un carré – Les parallélogrammes particuliers pdf

Cours 4ème – Reconnaître un carré – Les parallélogrammes particuliers rtf


Jeux en ligne : Mathématiques : 4ème