Intégrale et primitive : Terminale - PDF à imprimer

Intégrale d’une fonction continue et positive – Terminale – Exercices – PDF à imprimer

Intégrale d'une fonction continue et positive - Terminale - Exercices - PDF à imprimer

Exercices tleS corrigés à imprimer – Intégrale d’une fonction continue et positive – Terminale S Exercice 01 : Calcul d’aire avec un repère. Soit f une fonction continue sur ℝ et sa courbe représentative dans un repère orthonormé d’unité graphique de 1.5 cm. Quelle est, en cm2 l’aire A du domaine D délimité par, l’axe des abscisses et les droites d’équations ? Exercice 02 : Figure composée On cherche à calculer l’aire sous la courbe de la fonction f représentée…


Lire la suite

Intégrale d’une fonction continue et positive – Terminale – Cours – PDF à imprimer

Intégrale d'une fonction continue et positive - Terminale - Cours - PDF à imprimer

Tle S – Cours sur l’intégrale d’une fonction continue et positive – Terminale S Définition Dans un repère orthogonal , on appelle unité d’aire l’aire du rectangle de côtés [OI] et [OJ]. Soient a et b deux nombres réels tels que a < b. soit f une fonction continue et positive sur l’intervalle [a ; b] et φ sa courbe représentative dans un repère orthogonal. On appelle l’intégrale de a à b de f et on note , l’aire, exprimée…


Lire la suite

Propriétés de l’intégrale – Terminale – Exercices corrigés – PDF à imprimer

Propriétés de l’intégrale - Terminale - Exercices corrigés - PDF à imprimer

Exercices à imprimer tle S – Propriétés de l’intégrale – Terminale S Exercice 01 : La valeur moyenne Soit la fonction f définie sur [0 par : On donne dans un repère orthonormé la courbe représentative de la fonction f. Etudier les variations de f sur [0 ; π]. Démontrer que Calculer, en unité d’aire, l’aire sous la courbe sur [0 ; π]. En déduire la valeur moyenne de f sur [0 ; π]. Exercice 02 : Encadrement d’une intégrale…


Lire la suite

Propriétés de l’intégrale – Terminale – Cours – PDF à imprimer

Propriétés de l’intégrale - Terminale - Cours - PDF à imprimer

Tle S – Cours sur les propriétés de l’intégrale – Terminale S Soient f et g deux fonctions continues sur un intervalle I ; a, b et c éléments de I. Relation de Chasles Linéarité Pour tout réel k, on a : Positivité et ordre (encadrement) Si a < b et si f est positive sur [a ; b], alors le nombre est positif. Si a < b et si, pour tout x de [a ; b],, alors . Si…


Lire la suite

Primitives d’une fonction – Terminale – Exercices – PDF à imprimer

Primitives d'une fonction - Terminale - Exercices  - PDF à imprimer

Exercices corrigés Tle S – Primitives d’une fonction – Terminale S – Fonctions Exercice 01 : Une primitive Déterminer une primitive F de la fonction f définie sur ℝ par : Exercice 02 : Primitives d’une même fonction Soient F et G les fonctions définies sur ℝ par Montrer que F et G sont des primitives de la même fonction f sur ℝ. Exercice 03 : Les primitives Soient f et g deux fonctions définies sur ℝ par Déterminer la…


Lire la suite

Primitives d’une fonction – Terminale – Cours – PDF à imprimer

Primitives d'une fonction - Terminale - Cours - PDF à imprimer

Tle S – Cours sur les fonctions – Primitives d une fonction – Terminale S Définition et propriétés Définition Soit f une fonction définie sur un intervalle I. on appelle primitive de f sur I toute fonction F dérivable sur I telle que, pour tout réel x de I, Propriétés Soit F une primitive de f sur un intervalle I. Toutes les primitives de f sur I sont les fonctions G définies sur I par désigne un nombre réel quelconque….


Lire la suite

Primitives – Intégrales – Terminale – Exercices sur les fonctions – PDF à imprimer

Primitives - Intégrales - Terminale - Exercices sur les fonctions - PDF à imprimer

Tle S – Exercices corrigés à imprimer – Intégrales et primitives – Terminale S Exercice 01 : Calcul des intégrales Calculer les intégrales suivantes : Exercice 02 : Dérivée puis intégrale Soit la fonction f définie sur par : et φ sa courbe représentative dans un repère orthonormé. Quel est le signe de f sur ? Calculer l’aire sous la courbe φ sur l’intervalle [0 ; 3]. Exercice 03 : Calcul des surfaces. Soit la fonction f définie sur ]1par…


Lire la suite

Intégrales et primitives – Terminale – Cours – PDF à imprimer

Intégrales et primitives - Terminale - Cours - PDF à imprimer

Cours de tle s sur les fonctions: Intégrales et primitives – Terminale S Intégrale d’une fonction continue et positive Soit f une fonction continue et positive sur [a ; b]. Si F est une primitive quelconque de f sur [a ; b], alors Intégrale d’une fonction continue et négative Soit f une fonction continue et négative sur [a ; b]. L’intégrale de a à b de f est l’opposé de l’aire du domaine D situé sous la courbe φ. On…


Lire la suite

Intégrale et primitive : Terminale - Cours et exercice