TleS – Exercices corrigés sur la loi normale centrée réduite – Terminale S Exercice 01 : Loi N(0 ; 1) Une variable aléatoire X suit la loi N (0 ; 1). Démontrer que pour tout réel x > 0, Calculer le réel x tel que….. Exercice 02 : Avec une fonction Soit f la fonction définie sur R par Etudier les variations de f et tracer sa courbe représentative. Soit X une variable aléatoire suivant la loi normale N (0…
Loi normale centrée réduite – Terminale – Exercices – PDF à imprimer
Loi normale d’espérance µ et d’écart type σ2 – Terminale – Exercices – PDF à imprimer
Exercices corrigés à imprimer – Loi normale d’espérance µ et d’écart type σ2 – Terminale S Exercice 01 : Usine de tubes Une usine fabrique des tubes. On estime que la variable aléatoire X qui à chaque tube prélevé au hasard dans la production associe sa longueur (en cm) suit la loi normale N (500 ; σ2). La valeur de σ peut être modifiée par différents réglages des machines de production. Des observations ont permis d’établir que P(X > 545)…
Loi exponentielle – Terminale – Exercices corrigés – PDF à imprimer
Exercices à imprimer TleS – Loi exponentielle – Terminale S Exercice 01 : Désintégration radioactive La durée de vie avant désintégration d’un noyau radioactif exprimée en années peut être modélisée par une variable aléatoire X suivant une loi exponentielle de paramètre λ (λ > 0). Une étude conclut à une durée de vie inférieure ou égale à 100 ans pour 5 % d’entre eux. Déterminer le paramètre λ (à 10-4 près). Calculer la probabilité que la désintégration d’un noyau soit…
Loi à densité sur un intervalle – Terminale – Exercices – PDF à imprimer
Exercices corrigés pour la terminale S – TleS Loi à densité sur un intervalle Exercice 01 : Trouver la loi à densité Soit m un nombre réel et f la fonction définie sur [0 ; π] par : Déterminer le réel m pour que f soit une densité de probabilité sur [0 ; π]. Soit X une variable aléatoire suivant la loi de probabilité de densité f sur [0 ; π]. Calculer la probabilité Exercice 02 : Loi à densité…
Loi uniforme sur un intervalle – Terminale – Exercices corrigés – PDF à imprimer
Exercices à imprimer – Loi uniforme sur un intervalle – Terminale S Exercice 01 : Le métro On note X le temps d’attente, en minutes, avant l’arrivée du métro dans une certaine station et on suppose que X suit la loi uniforme sur [0 ; 6]. Quelle est la probabilité que le temps d’attente soit compris entre 2 et 5 minutes ? Quelle est la probabilité que le temps d’attente soit supérieur à 3 minutes ? Quel est le temps…