Cours, exercices et évaluation avec la correction niveau 3ème sur les critères de divisibilité et résolution de problèmes. Cours niveau 3ème sur les critères de divisibilité et résolution de problèmes. Division euclidienne Définition (division euclidienne de a par b) : a et b sont des nombres entiers positifs, avec b≠0. Effectuer la division euclidienne de a par b, c’est trouver deux nombres entiers positifs q et r tels que a=b×q+r avec r<b. Rappel : a=b×q+r Diviseurs et multiples…
Séquence complète pour la 3ème sur la synthèse sur les équations et problèmes. Cours pour la 3ème sur la synthèse sur les équations et problèmes. Équations du premier degré du type Équations du premier degré du type ax+b=cx+d ❶ Par additions et soustractions, on cherche à regrouper les termes en x dans un même membre et les nombres dans l’autre, on réduit. ❷ On divise si besoin. ❸ On vérifie avec l’équation initiale et on conclut. 7x+3=2x-5 Exercices avec les…
Séquence complète pour la 3ème sur la puissance de 10 et écriture scientifique. Cours pour la 3ème sur la puissance de 10 et écriture scientifique. Puissances de 10 à exposant positif. Soit n un nombre entier positif, on appelle 〖10〗^n le produit de n facteurs 10. Donc 10^n= 10×10×10×….. ×10= 1000….. 0 Exemples : 10^10=10×10×10×10×10×10×10×10×10×10=10 000 000 000 Remarque : Si n=0 alors 〖10〗^0=1 si n=1 alors 〖10〗^1=10 Puissances de 10 à exposant négatif. Soit n un nombre entier positif,…
Séquence complète pour la 3ème sur une équation produit et racine carrée. Cours pour la 3ème sur une équation produit et racine carrée. Équation produit nul Une équation produit nul est une équation écrite sous la forme (ax+b)(cx+d) = 0 (remarque : une équation produit nul peut contenir plus de 2 facteurs) Exemples : (2x+1)(x-3) = 0 est une équation produit. (2x+1)+ (x-3)= 0 et (x-5)(4x+7) = 1 ne sont pas des équations produit. Propriété : Un produit de facteurs…
Séquence complète pour la 3ème sur résoudre une équation du premier degré. Cours pour la 3ème sur résoudre une équation du premier degré. Définitions Une équation est une égalité avec une inconnue. On appelle premier membre le terme situé à gauche du signe = et second membre le terme situé à droite. Résoudre une équation consiste à trouver toutes les valeurs de l’inconnue qui vérifient l’égalité. On appelle ces valeurs les solutions de l’équation. Exemples : 3x+7 = 12x-2 est…
Séquence complète pour la 3ème sur le calcul littéral : Synthèse. Cours pour la 3ème sur le calcul littéral : Synthèse. Notations et multiplications On peut supprimer des symboles de multiplication : 3×x=x×3=3x Cas particulier : 1×x=1x=x Notation : x×x=x^2 (≠2x) Multiplications: 3x×5=3×x×5=15x 3x×2x=3×x×2×x=6x^2 2a×5b=2×a×5×b=10ab Substitution SUBSTITUER : c’est remplacer une lettre par une valeur donnée. A=2x^2-7x+2 pour x=3 A=2×3^2-7×3+2 A=2×9-21+2 A=18-21+2 A=-1 → on fait réapparaître les « × » et on applique les priorités. Exercices avec les corrigés…
Séquence complète pour la 3ème sur les nombres premiers et simplification de fractions. Cours pour la 3ème sur les nombres premiers et simplification de fractions. Nombres premiers Définition (nombre premier) : Un nombre premier est un nombre entier positif qui possède exactement deux diviseurs distincts : lui-même et 1. Exemples : – 0 n’est pas premier car 0 a une infinité de diviseurs. – 1 n’est pas premier car 1 n’a qu’un seul diviseur : lui-même. – 2 est…
Séquence complète pour la 3ème sur factoriser avec une identité remarquable. Cours pour la 3ème sur les fonctions sur factoriser avec une identité remarquable. Rappel : Factoriser une expression littérale, c’est transformer une somme (ou différence) en un produit. C’est le contraire de développer : k×a+k×b=k×(a+b) et k×a-k×b=k×(a-b) → Il faut repérer le facteur commun. → On regroupe dans une parenthèse les autres facteurs, en addition ou soustraction. Exemples : 5x+5y=5×(x+y) 3x+12=3×x+3×4=3×(x+4) x^2-7x=x×x-7×x=x×(x-7) 4x(x+1)+3(x+1)=(x+1)×(4x+3) Exercices avec les corrigés pour…
Séquence complète pour la 3ème sur les puissances d’exposants positifs ou négatifs. Cours pour la 3ème sur les puissances d’exposants positifs ou négatifs. Puissances d’exposants positifs : Définition : Soit a un nombre relatif et n un nombre entier strictement supérieur à 0. On appelle an le produit de n facteurs a. Donc : a^n=a× a× a×….. × a. Exemples : 5^3=5×5×5=125 (-3)^5=(-3)×(-3)×(-3)×(-3)×(-3)= -243 10^4=10×10×10×10=10 000 (2/5)^2=2/5×2/5= 4/25 Exercices avec les corrigés pour la 3ème sur les puissances d’exposants positifs ou…
Séquence complète pour la 3ème sur développer à l’aide d’une identité remarquable. Cours pour la 3ème sur développer à l’aide d’une identité remarquable. On appelle identité remarquable une égalité mathématique qu’il est intéressant de reconnaître pour accélérer ou simplifier un calcul. Soient a et b deux nombres quelconques, on a : (a+b)(a-b)=a^2-b^2 Preuve : on peut appliquer la double distributivité : (a+b)(a-b)=a×a+a×(-b)+b×a+b×(-b)=a^2-ab+ba-b^2=a^2-b^2 Remarque : l’ordre des parenthèses n’a pas d’importance : (a+b)(a-b)=(a-b)(a+b) Méthode : pour développer à l’aide de cette…
Séquence complète pour la 3ème sur développer et réduire une expression littérale. Cours pour la 3ème sur développer et réduire une expression littérale. Notations et multiplications : Avec les lettres, on peut supprimer des symboles de multiplication : 3×x=x×3=3x Multiplier plusieurs facteurs peut se faire dans n’importe quel ordre : Additions et soustractions : On peut ajouter ou soustraire les termes qui ont la même partie littérale : les x ensemble, les a ensemble, les x^2 ensemble, etc. On dit…
Séquence complète pour la 4ème sur la synthèse calcul littéral. Cours pour la 4ème sur la synthèse calcul littéral. Enlever les parenthèses précédées d’un signe + ou – : Lorsqu’une parenthèse est précédée d’un signe + on peut enlever cette parenthèse en conservant les signes à l’intérieur de celle-ci. Exemples : 5+(2x-1)=5+2x-1 Réduire une expression littérale : Réduire une expression littérale, c’est l’écrire avec le moins de termes possible. Méthode : Pour réduire une expression littérale, il faut supprimer les…
Séquence complète pour la 4ème sur réduire une expression littérale. Cours pour la 4ème sur réduire une expression littérale. Rappels Définition (rappel) : Une expression est une suite d’un ou plusieurs calculs. Une expression littérale est une expression contenant au moins une lettre. Exemples : A=3×x-2 ; B=y^2+1 ou encore C=2×x-3×y sont des expressions littérales. Propriété : On peut supprimer le signe × Lorsqu’il est suivi d’une lettre ou d’une parenthèse. Exemples : Les expressions littérales A et C ci-dessus…
Séquence complète pour la 4ème sur réduire une expression littérale (2). Cours pour la 4ème sur réduire une expression littérale (2). Rappel : On sait déjà développer une expression littérale grâce à la simple distributivité : k×(a+b) =k×a+k×b et k×(a-b)=k×a-k×b Double distributivité : On peut illustrer la double distributivité comme l’aire d’un rectangle : → Aire totale du rectangle : (a+b)×(c+d) → Aire décomposée comme la somme des 4 petits rectangles : a×c+a×d+b×c+b×d Soient a, b, c et d…
Séquence complète pour la 4ème sur multiplier par une puissance de 10 et écriture scientifique. Cours pour la 4ème sur multiplier par une puissance de 10 et écriture scientifique. Multiplier par une puissance de 10 : Propriété : Soit n un entier positif : ① Pour multiplier un nombre décimal par 〖10〗^n, il suffit de décaler la virgule de n rangs vers la droite, en complétant par des zéros si nécessaire. Exemples : A=65,245 × 10^2=6524,5 B=0,00016 × 10^5=16 ②…
Séquence complète pour la 4ème sur développer une expression littérale. Cours pour la 4ème sur développer une expression littérale. Rappels : Définition (rappel) : Une expression est une suite d’un ou plusieurs calculs. Une expression littérale est une expression contenant au moins une lettre. Exemples : ; ou encore sont des expressions littérales. Propriété : On peut supprimer le signe lorsqu’il est suivi d’une lettre ou d’une parenthèse. Exemples : Les expressions littérales et ci-dessus peuvent s’écrire et . Développement…
Séquence complète pour la 4ème sur les puissances de nombres relatifs. Cours pour la 4ème sur les puissances de nombres relatifs. Puissances d’exposants positifs : Définition : Soit a un nombre relatif et n un nombre entier strictement supérieur à 0. On appelle an le produit de n facteurs a. Donc : a^n=a× a× a×….. × a. Exemples : 3^4=3×3×3×3=81 (-2)^5=(-2)×(-2)×(-2)×(-2)×(-2)= -32 10^3=10×10×10=1000 (3/4)^2=3/4×3/4= 9/16 Remarques : Par convention a^0=1. Pour tout a : a^1=a. Pour tout a : a² se…
Séquence complète pour la 4ème sur le calcul avec des puissances de 10. Cours pour la 4ème sur le calcul avec des puissances de 10. Puissances de 10 à exposant positif. Propriété : En écriture décimale, 〖10〗^n s’écrit avec le chiffre 1 suivi de n zéros. Exemples : A=10^5=10×10×10×10×10=100 000 B= 10^10=10×10×10×10×10×10×10×10×10×10=10 000 000 000 Remarques : Si n=0 alors 〖10〗^0=1 si n=1 alors 〖10〗^1=10 Puissances de 10 à exposant négatif. Exercices pour la 4ème sur le calcul avec des…
Séquence complète pour la 4ème sur factoriser une expression littérale. Cours pour la 4ème sur factoriser une expression littérale. Rappels Définition (rappel) : Une expression est une suite d’un ou plusieurs calculs. Une expression littérale est une expression contenant au moins une lettre. Exemples : A=3×x-2 ; B=y^2+1 ou encore C=2×x-3×y sont des expressions littérales. Propriété : On peut supprimer le signe × Lorsqu’il est suivi d’une lettre ou d’une parenthèse. Exemples : Les expressions littérales A et C ci-dessus…
Séquence complète pour la 5ème sur la distance entre deux points. Cours pour la 5ème sur la distance entre deux points. Distance avec l’origine : Définition : Sur une droite graduée, la distance entre un point A et l’origine O est la distance à 0 de l’abscisse de ce point A. On la note OA. Exemples : On a ici OA = 1,5 et OB = 2. Si on a C(-0,7) alors OC = 0,7. Remarques :…
Séquence complète pour la 4ème sur la synthèse sur les fractions. Cours pour la 4ème sur la synthèse sur les fractions. Enchaînement d’opérations avec des nombres en écriture fractionnaire Propriété : Dans une suite de calculs avec des fractions, tu dois effectuer dans l’ordre : Les calculs entre parenthèses. S’il y a plusieurs niveaux de parenthèses, tu dois commencer par les parenthèses les plus intérieures. Les multiplications et les divisions, en appliquant la « règle des signes » et les…
Séquence complète pour la 4ème sur résoudre une équation. Cours pour la 4ème sur résoudre une équation. Définitions et propriétés : Résoudre une équation, c’est trouver la ou les valeurs de x qui vérifient l’équation. Un nombre est donc solution de l’équation si en remplaçant x par ce nombre l’égalité est vraie. Exemples : L’équation x – 2 = 0 admet une seule et unique solution évidente : x = 2. L’équation x² = 4 admet deux solutions : x1…
Séquence complète pour la 4ème sur tester une égalité. Cours pour la 4ème sur tester une égalité. Egalité Vocabulaire : en calcul littéral, une égalité est une expression littérale comportant deux membres, séparés par le symbole =. Exemple : 5x – 7 = 8 est une égalité. 1er membre 2ème membre Tester une égalité Une égalité peut être vraie ou fausse. Une égalité est vraie si ses deux membres ont la même valeur. En calcul littéral, on peut tester une…
Séquence complète pour la 4ème sur la division de fractions. Cours pour la 4ème sur la division de fractions. Inverse d’un nombre relatif non nul Définition 1 : a est un nombre relatif non nul. L’inverse du nombre a est le nombre 1/a . Autrement dit, l’inverse d’un nombre relatif non nul a est le nombre qui, multiplié par a, donne 1. Définition 2 (conséquence de la définition 1) : a et b sont des nombres relatifs non nuls….
Séquence complète pour la 4ème sur la multiplication de fractions. Cours pour la 4ème sur la synthèse sur la multiplication de fractions. Multiplication de fractions Propriété : a, b, c et d sont des nombres relatifs avec b≠0 et d≠0. On a : a/b×c/d=(a×c)/(b×d) Autrement dit, le produit de deux quotients est le quotient du produit des deux numérateurs par le produit des deux dénominateurs. Exemples : (-1)/5×3/2=(-1×3)/(5×2)=(-3)/10 7/5×4/(-3)=(7×4)/(5×(-3) )=28/(-15) (-13)/7×2/(-11)=(-13×2)/(7×(-11) )=(-26)/(-77)=26/77 Méthode recommandée pour multiplier deux ou plusieurs…
Séquence complète pour la 4ème sur les multiples et diviseurs d’un nombre. Cours pour la 4ème sur les multiples et diviseurs d’un nombre. Rappel sur la division euclidienne Rappel de la division euclidienne de a par b : a et b sont des nombres entiers positifs, avec b≠0. Effectuer la division euclidienne de a par b, c’est trouver deux nombres entiers positifs q et r tels que a=b×q+r avec r<b. Exemple : la division euclidienne de 14 par 3 est…
Séquence complète pour la 4ème sur l’addition et la soustraction de fractions. Cours pour la 4ème sur l’addition et la soustraction de fractions. Fractions égales – rappel Propriété : a, b et c sont des nombres relatifs avec b≠0 et c≠0. On a : a/b=(a×c)/(b×c) Méthode pour mettre deux fractions au même dénominateur : Pour mettre deux fractions a/b et c/d au même dénominateur, tu dois trouver un multiple commun à b et à d, de préférence le plus petit…
Séquence complète pour la 4ème sur les fractions égales. Cours pour la 4ème sur les fractions égales. Fractions – rappel Définition (quotient) : a et b sont deux nombres relatifs, avec b≠0. Le quotient de a par b, noté a/b, est le nombre qui multiplié par b, donne a. Définition (fraction) : Une fraction est un quotient de deux nombres entiers. Exemples : 3/4, (-5,1)/2, 10/1,5 et 2/(-3) sont tous des quotients mais seules 3/4 et 2/(-3) sont des…
Séquence complète pour la 4ème sur les opérations avec des nombres relatifs (Synthèse). Cours pour la 4ème sur les opérations avec des nombres relatifs (Synthèse). Enchaînement d’opérations Propriété : Dans une suite de calculs, tu dois effectuer dans l’ordre : Les calculs entre parenthèses. S’il y a plusieurs niveaux de parenthèses, tu dois commencer par les parenthèses les plus intérieures. Les multiplications et les divisions, en appliquant la « règle des signes ». Les additions et les soustractions. Remarques…
Séquence complète pour la 5ème sur diviser des nombres relatifs. Cours pour la 5ème sur diviser des nombres relatifs. Notation d’un quotient Définition : a et b sont des nombres relatifs, avec b≠0. Le quotient de a par b est le nombre qui, multiplié par b, donne a. On le note a/b. Rappel : Le nombre a s’appelle le numérateur et le nombre b s’appelle le dénominateur. Quotient de deux nombres 1. Quotient de deux nombres relatifs de…