Séquence complète pour la 4ème sur le repérage dans l’espace (Pavé droit). Cours pour la 4ème sur le repérage dans l’espace (Pavé droit). Repérage sur le plan : Rappels : Il est possible de repérer un nombre sur une demi-droite graduée en donnant son abscisse. Il est possible de se repérer dans un plan à l’aide d’un repère formé : D’une origine. De 2 axes perpendiculaires se coupant en l’origine : une droite horizontale (axe des abscisses) et une droite…
Séquence complète pour la 5ème sur le cylindre. Cours pour la 5ème sur le cylindre. Le cylindre : Définition : Un cylindre est un solide de l’espace constitué de : 2 disques superposables : les bases du cylindre. la surface latérale, qui peut se dérouler pour former un rectangle. Exemple : les bases sont le disque de centre C passant par B et le disque de centre D passant par A. La longueur DC est la hauteur du cylindre. Perspective…
Séquence complète pour la 5ème sur le pavé droit. Cours pour la 5ème sur le pavé droit. Le pavé droit : Définition : Un pavé droit est un solide de l’espace dont toutes les faces sont des rectangles. Perspective cavalière : Pour représenter un pavé droit sur un plan, j’utilise la perspective cavalière. Dans celle-ci : Les faces avant et arrière du pavé sont représentées en vraies grandeurs. 2 arêtes parallèles sont représentées par 2 segments…
Séquence complète sur “Volumes” pour la 5ème Notions sur “Géométrie dans l’espace” Cours sur “Volumes” pour la 5ème Volume du prisme droit = Aire de la base × hauteur du prisme Volume du cylindre Volume du cylindre = aire de la base × hauteur du cylindre Exemple : On veut calculer le volume d’un cylindre de hauteur h= 8 cm et de rayon r = 4 cm. On commence par calculer l’aire de la base : Aire de la base…
Séquence complète sur “Patrons” pour la 5ème Notions sur “Géométrie dans l’espace” Cours sur “Patrons” pour la 5ème Définition Un patron d’un solide est un dessin qui permet, après découpage et pliage, de fabriquer ce solide. Chaque face est dessinée en vraie grandeur. Patron d’un prisme droit Pour obtenir le patron d’un prisme droit il faut représenter toutes ses faces dans le même plan. Un patron d’un prisme droit est constitué de deux bases et des rectangles qui sont les…
Séquence complète sur “Construire et représenter un cylindre” pour la 5ème Notions sur “Géométrie dans l’espace” Cours sur “Construire et représenter un cylindre” pour la 5ème Un cylindre de révolution est le solide obtenu en faisant tourner un rectangle autour d’un de ses côtés. Un cylindre de révolution possède : Deux faces parallèles qui sont des disques de même rayon (superposables). Ce sont les bases. D’une surface courbe appelée face latérale. Cette surface, lorsqu’elle est dépliée devient un rectangle. La…
Séquence complète sur “Construire et représenter un prisme droit” pour la 5ème Notions sur “Géométrie dans l’espace” Cours sur “Construire et représenter un prisme droit” pour la 5ème Un prisme droit est un solide dont : Deux faces sont des polygones superposables et parallèles : on les appelle bases, et sont généralement dessinées « en haut » et « en bas ». (on a souvent l’impression que le solide est posé sur sa base inférieure) Les autres faces sont des…
Séquence complète sur “Se repérer dans un pavé droit” pour la 4ème Notions sur “L’espace” Cours sur “Se repérer dans un pavé droit” pour la 4ème. Tapez une équation ici. Repérage dans un parallélépipède rectangle ou pavé droit Un parallélépipède peut définir un repère de l’espace. Il faut choisir une origine, ici le point A et trois axes gradués définis à partir de 3 côtés du parallélépipède. On choisit ici le repère (A,AB,AD,AF). On dit aussi le repère (A,B,D,F). Un…
Séquence complète sur “Représenter une pyramide ou un cône” pour la 4ème Notions sur “L’espace” Cours sur “Représenter une pyramide ou un cône” pour la 4ème. Définition d’une pyramide. Une pyramide est un solide dont : • Une face est un polygone appelé base. • Toutes les autres faces sont des triangles qui ont un sommet commun appelé le sommet de la pyramide. Ces faces sont appelées faces latérales. • La distance entre le sommet de la pyramide et sa…
Séquence complète sur “Calcul du volume d’une pyramide ou d’un cône” pour la 4ème Notions sur “L’espace” Cours sur “Calcul du volume d’une pyramide ou d’un cône” pour la 4ème. Tapez une équation ici. Volume d’une pyramide ou d’un cône Volume=(aire de la base ×hauteur)/3 Dans le cas d’un cône de rayon r et de hauteur h , l’aire du disque est égale à πr^2. On a donc : Volume=(πr^2 ×h)/3 Exemples : Le volume d’une pyramide dont la base…