Cours de tleS sur les application du produit scalaire – Terminale S Orthogonalité Deux vecteurs sont orthogonaux si, et seulement si, leur produit scalaire est nul. On dit qu’un vecteur est normal au plan P si, et seulement si, quels que soient les points M et N du plan P, est orthogonal à. Si le vecteur est normal à P, tout vecteur colinéaire à est aussi normal à P. Pour que soit normal au plan (ABC), il suffit qu’il soit…
Application du produit scalaire – Terminale – Cours – PDF à imprimer
Produit scalaire de deux vecteurs – Terminale – Cours – PDF à imprimer
Cours tle S sur le produit scalaire de 2 vecteurs – Terminale S Produit scalaire de deux vecteurs Définitions: Dans l’espace, comme dans le plan, le produit scalaire de deux vecteurs est défini par : Si sont non nuls, alors cette définition est équivalente à : Dans un repère orthonormé, si les coordonnées de et celles de alors : Expression avec des points: Soient A, B et C trois points de l’espace et deux vecteurs Si H est le point…