Cours - Probabilités : Terminale - PDF à imprimer

Indépendance – Terminale – Cours – Probabilité – PDF à imprimer

Indépendance - Terminale - Cours - Probabilité - PDF à imprimer

Cours de probabilité pour la terminale S – Indépendance Soient A et B deux événements de probabilité non A et B sont indépendants lorsque la réalisation de l’un ne modifie pas les chances de réalisation de l’autre.   Soient A et B deux événements de probabilité non nulle. A et B sont indépendants si, et seulement si :   Si A et B sont indépendants, alors il en est de même pour :…..   Voir les fichesTélécharger les documents Indépendance…


Lire la suite

Probabilité conditionnelle – Terminale – Cours – PDF à imprimer

Probabilité conditionnelle - Terminale - Cours - PDF à imprimer

Cours de terminale S sur la probabilité conditionnelle tleS Définition P désigne une probabilité sur un univers fini Ω. A et B étant deux événements de Ω, B étant de probabilité non nulle, on appelle probabilité conditionnelle de l’événement A sachant que B est réalisé le réel p(A/B) tel que . Le réel p(A/B) se note aussi et se lit aussi probabilité de A sachant B On a donc Arbre pondéré La somme des probabilités des branches d’un nœud est…


Lire la suite

Lois de probabilité sur un ensemble fini – Terminale – Cours – PDF à imprimer

Lois de probabilité sur un ensemble fini - Terminale - Cours - PDF à imprimer

Cours sur les lois de probabilité sur un ensemble fini – Terminale S Définition Soit Ω= { , ,….. , } un ensemble fini. On définit une loi de probabilité sur Ω en donnant la probabilité de chaque issue, c’est-à-dire les nombres , ,….. , tels que : · Pour tout i de {1,2,….. , n}, ; pi est la probabilité élémentaire de l’événement {ai} et on note pi=p({ai}) ou parfois plus simplement p(ai). La probabilité d’un événement E est…


Lire la suite

Estimation – Terminale – Cours – PDF à imprimer

Estimation - Terminale - Cours - PDF à imprimer

Cours de tleS – Estimation – Terminale S Estimation L’intervalle de fluctuation de la variable aléatoire est : Ou est la proportion, connue ou à estimer, dans la population avec une probabilité au moins égale à 0.95. Or : Donc on peut écrire : Avec une probabilité au moins égale à 0.95. Si est la fréquence observée sur un échantillon de taille, la proportion appartient à l’intervalle : Un intervalle de confiance pour une proportion au niveau de confiance 0.95…


Lire la suite

Intervalle de fluctuation – Terminale – Cours – PDF à imprimer

Intervalle de fluctuation - Terminale - Cours - PDF à imprimer

Cours sur l’intervalle de fluctuation – Terminale S Intervalle de fluctuation Définition : Soit X une variable aléatoire suivant une loi binomiale de paramètre n et p. On appelle intervalle de fluctuation de X au seuil 0.95 tout intervalle tel que : Exemple : En classe de seconde, avec les conditions Un intervalle de fluctuation approché au seuil 0.95 de la fréquence est : Intervalle de fluctuation asymptotique: Si une variable aléatoire suit une loi binomiale de paramètre n et…


Lire la suite

Loi normale centrée réduite – Terminale – Cours – PDF à imprimer

Loi normale centrée réduite - Terminale - Cours - PDF à imprimer

TleS – Cours sur la loi normale centrée réduite – Terminale S Définition On appelle loi normale centrée réduite N (0, 1), la loi ayant pour fonction de densité la fonction f définie sur R par : Sa courbe représentative est appelée « courbe de Gauss » ou « courbe en cloche ». La fonction f étant paire, la courbe est symétrique par rapport à l’axe des ordonnées. L’aire totale sous la courbe en cloche sur l’intervalle est égale à…


Lire la suite

Loi normale d’espérance µ et d’écart type σ2 – Terminale – Cours – PDF à imprimer

Loi normale d’espérance µ et d’écart type σ2 - Terminale - Cours - PDF à imprimer

TleS – Cours sur la loi normale d’espérance µ et d’écart type σ2 Terminale S Définition Une variable aléatoire X suit une loi normale d’espérance µ et d’écart-type σ si la variable aléatoire suit la loi normale centrée réduite N (0, 1). La courbe représentative de la fonction de densité est une courbe en cloche ; elle admet pour axe de symétrie la droite d’équation x = µ. L’écriture de la fonction de densité et le calcul d’aire sous la…


Lire la suite

Loi exponentielle – Terminale – Cours – PDF à imprimer

Loi exponentielle - Terminale - Cours - PDF à imprimer

Tle S – Cours sur la loi exponentielle – Terminale S Définition Soit λ un réel strictement positif. La loi exponentielle de paramètre λ modélise la probabilité qu’un élément cesse de vivre au cours d’un intervalle de temps donné. Elle admet pour densité de probabilité la fonction définie sur par : L’aire sous la courbe sur est égale à 1. Propriétés Soit une variable aléatoire T suivant une loi exponentielle de paramètre λ. Pour tout réel a strictement positif :…


Lire la suite

Loi à densité sur un intervalle – Terminale – Cours – PDF à imprimer

Loi à densité sur un intervalle - Terminale - Cours - PDF à imprimer

Tle S – Cours sur la loi à densité sur un intervalle – Terminale S Variable aléatoire continue On considère une expérience aléatoire. Si X est une variable aléatoire discrète prenant un nombre fini de valeurs, sa loi de probabilité est une fonction qui associe à toute valeur de k prise par X sa probabilité P(X = k). Dans ce cours, on s’intéresse à des variables aléatoires X qui prennent leurs valeurs dans un intervalle ; on dit qu’elles sont…


Lire la suite

Loi uniforme sur un intervalle – Terminale – Cours – PDF à imprimer

Loi uniforme sur un intervalle - Terminale - Cours - PDF à imprimer

Tle S – Cours sur la loi uniforme sur un intervalle Définition La loi uniforme sur [a; b] modélise le choix au hasard d’un nombre dans l’intervalle [a; b]. Elle est la loi de probabilité ayant pour densité de probabilité la fonction constante f définie sur [a ; b] par : Propriété Soit une variable aléatoire X suivant la loi uniforme sur [a; b]. si c et d sont deux nombres appartenant à [a; b], l’événement « » est noté…


Lire la suite

Probabilités : Terminale - Cours

Tables des matières Probabilités : Terminale