Les matrices mathématiques, éléments centraux des programmes de Terminale S, constituent un pilier incontournable pour la compréhension des concepts avancés en sciences. Leur étude, ancrée dans une tradition historique riche, demeure essentielle pour décrypter de nombreux phénomènes physiques et algorithmes informatiques. A travers un ensemble structuré de cours et de leçons sur les matrices, l’objectif pédagogique vise à outiller les élèves de Terminale S avec une compréhension approfondie de leur utilité pratique et théorique. Cet aperçu initie nos jeunes esprits aux fascinantes applications des matrices, pavant la voie vers une maîtrise conceptuelle qui dépasse le cadre scolaire.
Matrices et systèmes – Terminale – Cours – PDF à imprimer
Cours sur les matrices et systèmes pour la terminale S – Tle S Ecriture matricielle d’un système Soient des nombres réels. Le système : Admet l’écriture matricielle : De même le système : Admet l’écriture matricielle : Propriété Si B est inversible, alors le système matriciel admet une unique solution, pour tout second membre B, et cette solution est donné par Si, pour un second membre quelconque, le système matriciel admet une unique solution, alors la matrice A est inversible…
Puissances de matrices – Terminale – Cours – PDF à imprimer
Cours sur les puissances de matrices – Terminale S Puissances de matrices Définition et propriétés: Soit A une matrice de taille n. On définit, par récurrence, pour tout entier p, la matrice par et, pour tout entier p, Pour toute matrice carrée A, Pour tout entiers p et q, on a : Exemple d’application: Soit A une matrice égale à. Calculer pour tout entier On calcule les premières puissances de la matrice A, ce qui conduit à conjecturer une formule…
Matrices inversibles – Terminale – Cours – PDF à imprimer
Cours de tle S sur les matrices inversibles – Terminale S Matrices inversibles Définitions: Une matrice carrée A de taille est inversible s’il existe une matrice B de même taille que A telle que : Lorsqu’il existe, l’inverse de la matrice A est unique et se note Une matrice carrée est inversible si, et seulement si, Formule de Cramer: Si est inversible, alors : Exemple d’application: Soit La matrice A est-elle inversible ? Si oui, calculer son inverse. On détermine…
Opérations sur les matrices – Terminale – Cours – PDF à imprimer
Cours de terminale S sur les opérations sur les matrices – Tle S Addition et produit par un nombre réel Définitions: On peut additionner deux matrices de même taille. La somme se fait entrée par entrée. Soient : deux matrices de taille . La somme des matrices A et B est : Soit λ un nombre réel et une matrice de taille Le produit de la matrice A par le nombre réel λ est : Propriétés: Soient λ et μ…
Matrices – Terminale – Cours – Définition – PDF à imprimer
Cours sur les matrices en terminale S – Définition Définitions et vocabulaire matrice: Soit un couple d’entiers naturels non-nuls On appelle matrice de dimension (on ne calcule pas la valeur de ce produit ) ou de format tout tableau rectangulaire de nombres, appelés coefficients de la matrice. Ces coefficients sont disposés sur n lignes et p colonnes. On note une matrice par une lettre majuscule et ses coefficients par la même lettre minuscule à laquelle on affecte deux indices, le…