Tle S – Cours sur l’intégrale d’une fonction continue et positive – Terminale S Définition Dans un repère orthogonal , on appelle unité d’aire l’aire du rectangle de côtés [OI] et [OJ]. Soient a et b deux nombres réels tels que a < b. soit f une fonction continue et positive sur l’intervalle [a ; b] et φ sa courbe représentative dans un repère orthogonal. On appelle l’intégrale de a à b de f et on note , l’aire, exprimée…
Intégrale d’une fonction continue et positive – Terminale – Cours – PDF à imprimer
Propriétés de l’intégrale – Terminale – Cours – PDF à imprimer
Tle S – Cours sur les propriétés de l’intégrale – Terminale S Soient f et g deux fonctions continues sur un intervalle I ; a, b et c éléments de I. Relation de Chasles Linéarité Pour tout réel k, on a : Positivité et ordre (encadrement) Si a < b et si f est positive sur [a ; b], alors le nombre est positif. Si a < b et si, pour tout x de [a ; b],, alors . Si…
Primitives d’une fonction – Terminale – Cours – PDF à imprimer
Tle S – Cours sur les fonctions – Primitives d une fonction – Terminale S Définition et propriétés Définition Soit f une fonction définie sur un intervalle I. on appelle primitive de f sur I toute fonction F dérivable sur I telle que, pour tout réel x de I, Propriétés Soit F une primitive de f sur un intervalle I. Toutes les primitives de f sur I sont les fonctions G définies sur I par désigne un nombre réel quelconque….
Intégrales et primitives – Terminale – Cours – PDF à imprimer
Cours de tle s sur les fonctions: Intégrales et primitives – Terminale S Intégrale d’une fonction continue et positive Soit f une fonction continue et positive sur [a ; b]. Si F est une primitive quelconque de f sur [a ; b], alors Intégrale d’une fonction continue et négative Soit f une fonction continue et négative sur [a ; b]. L’intégrale de a à b de f est l’opposé de l’aire du domaine D situé sous la courbe φ. On…
Comparaison et lever une indétermination – Terminale – Cours – PDF à imprimer
Tle S – Cours – Comparaison et lever une indétermination – Terminale S Comparaison Théorème: Remarque : peut désigner +∞ ou -∞ ou un réel fini. Lever une indétermination Etape à suivre pour lever une indétermination à travers des exemples d’application : On commence par constater l’indétermination. Les quatre formes indéterminées sont : Dans un cas indéterminé on ne peut pas conclure, il est donc nécessaire de lever l’indétermination. Plusieurs techniques peuvent être utilisées, par exemple : On peut factoriser…
Définition formelle – Terminale – Cours – PDF à imprimer
Cours de tle S sur la définition formelle – Terminale S Définition formelle Déterminer la limite d’une fonction composée Déterminer la limite d’une fonction composée à travers un exemple d’application: On exprime la fonction sous la forme d’une composée de plusieurs fonctions. On recherche successivement la limite de chacune de ces fonctions en tenant compte à chaque étape du résultat trouvé précédemment. Le changement de variable, on posant : est une autre façon d’écrire cette méthode. On pose On trouve…
Règles opératoires – Terminale – Cours – PDF à imprimer
TlesS – Cours sur les règles opératoires en terminale S Règles opératoires Les règles formulées dans les tableaux suivants sont valables quelle que soit l’abscisse où l’on prend la limite (en -∞, en un réel fini, en 0, en +∞), les « ? » représentent les formes indéterminées, k et k’ désignent deux réels finis. Somme algébrique de limites:….. Quotient de limites:….. Dans le cas, il est important d’étudier le signe du dénominateur. Les cas de formes d’indétermination Les quatre…
Aspects géométriques – Terminale – Cours – PDF à imprimer
Tle S – Cours sur les aspects géométriques en terminale S Aspects géométriques : Si : Alors, Cf a une asymptote verticale en a. Si : Alors, Cf a une asymptote horizontale en +∞ (il en est de même en -∞). Remarque : Une courbe peut traverser son asymptote horizontale. Voir les fichesTélécharger les documents Aspects géométriques – Terminale S – Cours rtf Aspects géométriques – Terminale S – Cours pdf…
Limites usuelles – Terminale – Cours – PDF à imprimer
Cours de tle S sur les limites usuelles – Terminale S Limites d’une fonction : Si tout intervalle ouvert contenant L contient toutes les valeurs f(x) dès que x est assez grand, alors : Si tout intervalle contient toutes les valeurs f(x) dès que x est assez grand, alors : On peut aussi énoncer des définitions similaires pour les limites : En -∞ « dès que x est assez grand » est alors remplacé par « dès que x est…
Nombre dérivé et tangente en un point – Terminale – Cours – PDF à imprimer
Tle S – Cours sur le nombre dérivé et tangente en un point – Terminale S Nombre dérivé Le coefficient directeur de la droite (AM) est le taux d’accroissement de la fonction f entre les deux points A et M : La fonction est dérivable en si, et seulement si, admet une limite finie, , lorsque h tend vers 0. Autrement dit le nombre dérivé de f en est la limite, si elle existe, du taux d’accroissement lorsque h tend…
Fonctions dérivées – Terminale – Cours – PDF à imprimer
Cours de Tle S sur les fonctions dérivées – Terminale S Fonction dérivée Soit f une fonction définie sur un intervalle. Si f est dérivable pour tout x de, on dit que f est dérivable sur. On appelle la fonction dérivée, ou dérivée de f la fonction notée qui à tout x de I de associe le nombre dérivé de f en x, soit. Dérivées des fonctions usuelles Le tableau suivant regroupe les fonctions usuelles et leurs dérivées. Opérations sur…
Sens de variation d’une fonction – Terminale – Cours – PDF à imprimer
Cours de Tle S – Sens de variation d’une fonction – Terminale S Théorème Soit f une fonction définie et dérivable sur un intervalle I et sa fonction dérivée. Si, pour tout x de I,alors est strictement croissante sur Si, pour tout x de I,alors est constante sur Si, pour tout x de I,alors est strictement décroissante sur Propriétés Soit f une fonction définie et dérivable sur un intervalle I et si f admet un extremum local en un point…
Théorème des valeurs intermédiaires – Terminale – Cours – PDF à imprimer
Tle S – Cours sur le théorème des valeurs intermédiaires en terminale S Théorème Soit f une fonction continue sur un intervalle fermé. Tout réel c compris entre a au moins un antécédent sur ; autrement dit, l’équation a au moins une solution sur. Cas particulier des fonctions strictement monotones Si la fonction est continue et strictement croissante (respectivement décroissante) sur, pour tout réel c de (respectivement de), l’équation a une unique solution sur. En particulier, si, l’équation a une…
Continuité – Terminale – Cours – PDF à imprimer
Tle S – Cours sur la continuité à imprimer pour la terminale S Fonction continue sur un intervalle Soit f une fonction définie sur un intervalle I de ℝ. Cela signifie que la courbe représentative de f ne présente pas de « trous » sur cet intervalle. On peut la tracer sans lever le crayon. Exemples et contre-exemples Toutes les fonctions usuelles sont continues. Les fonctions affines, carrées, polynômes, valeurs absolues sont continues sur ℝ. La fonction inverse est continue…